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Hadronic Correlators from All-point Quark Propagators
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A method for computing all-point quark propagators is applied to a variety of processes of physical interest in

lattice QCD. The method allows, for example, efficient calculation of disconnected parts and full momentum-space

2 and 3 point functions. Examples discussed include: extraction of chiral Lagrangian parameters from current

correlators, the pion form factor, and the unquenched eta-prime.

1. Methodology

The very high cost of generating decorrelated
dynamical gauge configurations makes it increas-
ingly important to extract the maximum physi-
cal information content of each available config-
uration. In many cases, this requires calculation
of hadronic observables involving quark propaga-
tors from any point on the lattice to any other.
Here we describe an approach to obtaining such
propagators by simulating bosonic pseudofermion
fields. Introduce bosonic pseudofermion field φma

with action (m a lattice site, a the spin-color in-
dex, Q the Wilson or clover operator):

S(φ) = φ†Q†Qφ

= φ†H2φ, H ≡ γ5Q = H†

For fixed background gauge field A, simulating
the pseudofermion field with the preceding ac-
tion produces the following correlator (<< O >>
means the average of O relative to the measure
e−S) :

<< φmaφ∗
nb >>S(φ) = (H−2)ma,nb

<< φma(φ†H)nb >>S(φ) = (H−1)ma,nb

= (Q−1γ5)ma,nb

These simulations are practical for two reasons:
(i) The pseudofermion average << .... >> is
efficiently implemented by heat-bath update of
pseudofermion fields.

∗Talk presented by A.Duncan

(ii) For a fixed gauge field, most quantities decor-
relate after a few pseudofermion sweeps.
The computation of multipoint hadronic corre-
lators involving n quark propagators can be re-
duced to convolutions of n pseudofermion fields,
rapidly computed by fast Fourier transform
(FFT). For example, the full 4-momentum trans-
form ∆(q) ≡

∑
x,y eiq·(x−y)∆(x, y) of the 2-point

pseudoscalar correlator

∆(x, y) = < 0|T {Ψ̄(x)γ5Ψ(x) Ψ̄(y)γ5Ψ(y)}|0 >

= − < tr((Q−1γ5)xy(Q
−1γ5)yx) >

= − <<
∑

ab

φxa(φ†H)ybχyb(χ
†H)xa >>

= − << (φ†Hχ)yy(χ†Hφ)xx >>

becomes

∆(q) = − << FFT(χ†Hφ)(q)FFT(φ†Hχ)(−q) >>

2. Applications

We have studied the feasibility of a pseud-
ofermion approach to all-point propagators in a
number of examples of physical interest. A brief
report on the progress to date follows.

2.1. Chiral Lagrangian Parameters from

Current Correlators

The chiral Lagrangian predicts the low-
momentum structure of 2-point functions such as
∆(q) in QCD [1]:

∆(q) ≃
G2

π

q2 + M2
π

+
B2

2π2
(h1 − l4) + Cq2 + O(q4)
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Figure 1. Decorrelation of pseudofermion evalua-
tions of ∆(q)

Gπ =
FπM2

π

mq

BF 2
π = < Ψ̄Ψ >

We have studied various correlators of this type
using 800 dynamical configurations generated us-
ing the truncated determinant (TDA) algorithm
[2] on large coarse (64) lattices. The presence of
low eigenmodes of H leads to longer autocorre-
lation times for the zero momentum component
(see Fig.1), on the order of 60 pseudofermion
sweeps, with much more rapid decorrelation for
nonzero momentum values of ∆(q2). (Low mo-
mentum autocorrelations can be substantially re-
duced by projecting out the lowest few eigen-
modes of H- the required code has been written
and is presently being tested [3]). However, even
at zero momentum, the intrinsic gauge fluctua-
tions exceed the statistical errors from the pseud-
ofermion evaluation (which become very small at
higher momenta where decorrelation is rapid).
This can be seen in Fig.2, where we display the
measured ∆(q2) for two separate configurations,
as well as the average over 800 configurations and
a fit to the chiral formula. In fact a good fit to the
predicted chiral form can be obtained even with-
out the zero-momentum point. The parameters
h1, l4 are couplings in the next-to-leading order
chiral Lagrangian [1]. Fitting the measured ∆(q)
(800 64 unquenched TDA lattices [4] with O(a2)
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Figure 2. 4 parameter fit of measured ∆(q2)

improved gauge action, a=0.4 F):

∆(q) =
A1

q2 + A2
+ A3 + A4q

2 + A5(q
2)2

A standard cosh fit of smeared-local correlators
gives Mπ = 0.396 ± 0.007. Allowing the pion
mass to vary in the chiral formula, the best fit
(see Fig.2) is obtained in the range 0.25< q2 <2.5
GeV2, and gives a 2% evaluation (jackknife er-
rors) of the one-loop chiral parameter A3:

A1 = 23.1 ± 0.4

A2 = 0.178 ± 0.017 ⇒ Mπ = 0.422± 0.020

A3 = 9.48 ± 0.16

A4 = −0.70 ± 0.02, A5 = 0.025 ± 0.001

2.2. Three-point Functions: the Pion Form

Factor

To extract the pion formfactor, we need the
following 3-point function (see Fig.3):

Jt0t1t2(~q
2) =

∑

~w~x~y~z

ei~q·(~x−~y)f sm(~z)f sm(~w)

< Ψ̄(~z + ~x, t2)γ5Ψ(~x, t2)Ψ̄(~y, t1)γ0Ψ(~y, t1)

Ψ̄(~w, t0)γ5Ψ(0, t0) >

To evaluate J(q2) simultaneously for all space-
like q injected at time t1 by the electromag-
netic current, it suffices to use a conventional
smeared source propagator for the quark prop-
agation from ~w, t0 to ~y, t1 and a smeared sink
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Figure 3. 3-point function for pion form factor

propagator for the propagation from ~x + ~z, t2 to
~0, t0. The remaining propagator from ~y, t1 to ~x, t2
is then needed for all source and sink points (to
obtain the full momentum space Fourier trans-
form) and is evaluated by the pseudofermion tech-
nique. At this stage, both the connected and dis-
connected contributions (where the quark prop-
agates from ~y back to ~y) to J(q2) are readily
available, as the all-point propagator also gives us
the amplitude for all coincident source and sink
points. An approximate pion form factor is given
by J(q2)e(t2−t1)E(q)/E(q)) (t0, t1, t2=0,3,6, with
E(q) the energy for a lattice pion of momentum
q): results obtained with 60 quenched 123x24 lat-
tices at β =5.9 are shown in Fig. 4. Analysis
of a single gauge configuration takes about 12
hours on a Pentium 4 processor. Reliable cal-
culation of the pion form factor requires use of
optimized smearing wavefunctions f sm to project
out ground-state pions as the signal dies quickly
at larger Euclidean times t1 − t0, t2 − t1, espe-
cially at larger momentum, and to check that
a plateau is reached at large Euclidean time.
Of course, more accurate results require higher
statistics than used in this feasibility study.

2.3. The unquenched eta-prime

We may extract the etaprime propagator in the
isoscalar channel using two pseudofermion fields
to generate propagators for both quark lines:

∆η(p) =
∑

xy~z ~w

eip·(x−y)f sm(~z)f sm(~w) ×

< Ψ̄(~z + ~x, x4)γ5Ψ(x)Ψ̄(~w + ~y, y4)γ5Ψ(y) >
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Figure 4. Connected and Disconnected contribu-
tions to Pion Form Factor

In terms of pseudofermion averages, this gives a
connected
∑

xy~z ~w

eip·(x−y)f sm(~z)f sm(~w)

<< φ(x)(φ†H)(y + ~w)χ(y)(χ†H)(x + ~z) >>

as well as disconnected (“hairpin”) contribution
(for two flavors of sea quarks):

−2
∑

xy~z ~w

eip·(x−y)f sm(~z)f sm(~w)

<< φ(x)(φ†H)(x + ~z)χ(y)(χ†H)(y + ~w) >>

Computations of the unquenched eta-prime prop-
agator using this method are in progress, using
103x20 lattices generated with the TDA algo-
rithm.
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